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WAVE STRUCTURE INDUCED BY FLUID DYNAMIC LIMITS
IN THE BROADWELL MODEL

§1. Introduction

Being among the simplest models in the kinetic theory of gases, the Broadwell model has

served as a paradigm to understand the phenomenon of relaxation and the transition from

a microscopic to a macroscopic description of gases. It consists of the system of semilinear

hyperbolic equations
f 1 ( 2 -

af3 2ff)
f _ _ flf

and is associated with a six-velocity model describing a system of particles with identical

masses that move along three mutually orthogonal directions with speeds ±c and interact

according to a mechanism of equiprobable binary collisions (Broadwell [B]). The system

(1.1) derives from the six-velocity model when specializing to one-dimensional flows, for

which the densities of particles moving in the directions orthogonal to the flow are all

equal. (We refer to Platkowski and Illner [PI] for the derivation and references).

In this context the function f = (fl, f2, f3), defined for (x, t) E JR x iR+, describes the

densities of particles: fi for particles moving in the positive x-direction, f2 in the negative

x-direction and f3 in each of the positive or negative y- or z-directions. The speed c is

taken here equal to one and e stands for the mean free path, a measure of the average

distance between successive collisions. The right hand side is called the collision operator



and measures the rate of gain (or loss) in densities of particles effected through collisions.

It is characterized by the quantity

QWf = f3 - flf2. (1.2)

The zeroes of Q(f) are the states of equilibrium for the system, f2 = fM f2, and are called

Maxwellians. Finally, associated with each f are the quantities

Pf = fl + f2 +-4f3, rnf = fl - f2 (1.3)

.measuring the local density and momentum flux in the x-direction, respectively.

The limit when the mean free path approaches zero is known as the fluid dynamic

limit. For small mean free path the strong interactions of particles entail a macroscopic

description of the flow to become meaningful. In the case of the Broadwell model the

induced macroscopic "Euler equations" are easy to identify. First rewrite (1.1) in the form

9(fl + f2+4f3)+ a-(fl- f2)=0,at ax

Fomaly s - 0 at isepce 4httefrs w9qain asintelmtXhl hS-2 M- 2

Formally, as e -> 0, it is expected that the first two equations pass in the limit, while the

third causes the limiting f to be a local Maxwellian. Thus the limit fluid equations become

(f± + f2 +4(flf2)12 )+ _a (fh - f2) =0,ax (1.5)

5i(f, - f2) + ýX (fl + f2) = (.

The corresponding macroscopic density and momentum of the fluid are given by

p = f. + 4(flf2) 1 / 2 + f2, rn = pu = fi - f 2 . (1.6)
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The algebraic system can be easily inverted and leads to an alternative form of the limit

"Euler equations", in terms of the macroscopic variables (p, u),

'9 + 9 P)= o,
+ =0,X (1.7)

-(pu) + -(pg(u)) = 0,

where u) [2(1 + 3u 2)1 /2 - 1] They form a strictly hyperbolic, genuinely nonlinear

system of conservation laws (Caflisch [C]).

The justification of the fluid dynamic limit has been the object of several investigations.

We refer to Cercignani [Ce) for a survey of the literature on the Boltzmann equation

and to Platkowski and Illner [PI] for resultý on discrete velocity models of kinetic theory.

For the Broadwell model, the fluid dynamic limit is understood for smooth solutions of

the limit "Euler equations" (Inoue and Nishida [NI], Caflisch and Papanicolaou [CP]).

Regarding the case of solutions with shocks, we mention the studies on stability (in time) of

traveling wave solutions (Kawashima and Matsuniura [KM]) or rarefaction wave solutions

(Matsumnura [M]) for the Broadwell model, and a recent study by Xin [X], showing that

a given piecewise smooth solution with noninteracting shocks of the limit fluid equations

can be approximated by solutions of the Broadwell system as E --+ 0, that gives a definitive

answer to one direction of the problem. The converse problem, to show that a given

family of solutions to the Broadwell system converges globally in time to a fluid-dynamical

solution, remains at present open.

hisight in the latter direction is provided by the approach of self-similar fluid dynamic
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limits (Slemrod and Tzavaras [STI). For Riemann, Maxwellian data

f(X,O) = f+' X > 0 with f+ - (f',f ,f2 ) (1.8)f-, < 0

Q(f-)Q(f+) =O,'A :•f2 I: A (M)

the solutions of the limit fluid equations (1.5) are expected to be self-similar fup'tions

of ý = x/t. On the other hand, the Broadwell system does not possess space-time dila-

tional invariance and does not admit self-similar solutions of that type. Motivated by an

analogous idea for systems of conservation laws (Dafermos [D1]), one considers a modified

Broadwell system Ofi +Of 1 1 2Of--- + U(f- fl f2),

Ot Ox et 3oft f2 = 12 - f, f), (19)

at3 -2 (f3 - flf2),

which does preserve the dilational invariance (x, t) -- (ax, at), a > 0. The resulting

Riemann problem (1.8 - 1.9) admits self-similar solutions of the form f = f(x/t). These

are constructed by solving the singular boundary value problem

W- 1)f(0) = (U3 - fl f2)/E

- + W2'(0 = ( 3 - flf)
(1.10)

-ýf3 = -(f2 - fif2)/2•

f(-1) =f, f(+1) = f+,

for E -1, 11 and f subject to (M), referred to as problem (P,'). It has the following

property [STI: Any family of solutions {ff},>o to (P,) corresponding to fixed data f± is
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of uniformly bounded variation and, as a consequence, there exists a subsequence {f e }

with e, --* 0 and a function of bounded variation f such that f" -+ f pointwise. The

limiting f is a local Maxwellian, satisfying f.3 = (fif2) 1 2 a.e in [-1,11. If f is extended

to the entire real line, by setting f = f- on (-cc, -1) and f - f+ onl (1, oc), the function

f(x/t) becomes a weak solution of the Riemann problem (1.5, 1.8).

The goal of this article is to investigate the structure of the limiting function f con-

structed via self-similar fluid dynamic limits. Of special interest is to clarify the behavior

of f(ý) at points of discontinuity. The Broadwell model, being among the simplest in ki-

netic theory, is a case study to understand the mechanism of relaxation and the associated

admissibility restrictions imposed on shocks.

The presence of relaxation mechanisms is natural in many physical contexts and has been

investigated extensively both for specific models, such as Broadwell, but also for systems

of two conservation laws with relaxation (e.g. Liu [L]). For (1.1), the study of shock

profiles by Broadwell [B] captures the regularizing effect induced on shocks by relaxation.

These shock profiles have been compared, and are in close agreement for weak shocks, with

traveling wave solutions of an associated system of viscous conservation laws arising from

(1.1) via the Chapman-Enskog expansion (Caflish [C]). An important difference of the self-

similar relaxation investigated here is that it penalizes the whole wave fan simultaneously.

Comparisons between the structure entailed by self-similar limits and the Broadwell shock

profiles are carried out in the text.

The structure of the limiting solution is completely characterized via this approach. It
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turns out, that f consists of two wave fans separated by a constant state. Each wave fan is

associated with one of the characteristic fields of the limit fluid equations and consists of

either a single rarefaction or a single shock. The shocks satisfy the Lax shock conditions

and have the internal structure of a Broadwell shock profile.

The approach of self-similar viscous limits to study the structure of the Riemann problem

was initiated by Dafermios [D2 ], in the context of systems of two conservation laws. Several

of the ideas developed in [D2 1 are used here, but the basic strategy is different. One starts

with some representation formulas expressing the rate of collisions Q(f )/& (and thus also

the derivatives ff) as an averaging process depending on functions of the solution f.

Using the estimates on the total variation of f' from [ST], it can be shown that there is a

finite Borel-Stieltjes measure so that along a subsequence

Q(f 6)
-- v weak-* in measures.

The measure v incorporates the form of the limiting f. Although v can not be explicitly

computed via this approach, it is possible to establish several properties of v. Its support

coincides with the set where f is nonconstant. Most important, using the representation

formulas, it turns out that at points of supp v a function g related to the antiderivatives

of the eigenvalues is maximized (Proposition 4.4). The maximization property captures (a

large part of) the restrictions imposed on solutions by the relaxation process. It provides

the behavior of the eigenvalues to the limit fluid equations on supp v (Corollary 4.5). The

first part of the proof, carried out in Sections 3 and 4, is completed by characterizing the

behavior of right and left derivatives at points in the wave fans (Proposition 4.6).
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The emerging structure is that typical (at least for small data) of strictly hyperbolic

but not necessarily genuinely nonlinear systems. The reason is that although the analysis

in Sections 3 and 4 makes essential use of the strict hyperbolicity property of the limit

fluid equations, it never uses its genuine nonlinearity properties. Complementing this

picture, the geometry of the shock curves for (1.5) is employed in Section 6 to rule out the

possibility of contact discontinuities and arrive at the stated result. Finally in Section 5,

an idea fromn [D2] is adapted to show that at points of discontinuity the family f has the

internal structure of a Broadwell shock profile (Proposition 5.1).

§2. Preliminaries. The boundary value problem (P,).

First we review some preliminary information on solutions of the boundary value problem

(T,). The material presented in this section is taken out of [ST].

As the underlying differential equations are singular, the meaning of solutions needs

clarification. A function f = (f, f2, f3 ) defined on [-1, 1] solves (P,) if fj E Cf-1, 1]

satisfy the boundary conditions f,(±l) = ff, j = 1, 2,3, and the weak form of the

equations

-V +f (b , + L7 (d Q(f(r))dr, (2.1)

Lb 1 b
-(b + 1)fj(•)I + f 2(7)dr = ! Q(f(r))dr , (2.2)

-Cf3(C)j' +j f3(=r)dr jLQ(f(,r))dr, (2.3)

for all a, b E [-1, 1]. It follows immediately that a solution in the above sense is contin-

uously differentiable (except possibly at the singular points ±1 and 0) and satisfies the
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strong form of equations (1.10) on (-1, 0) and (0, 1). A more detailed analysis shows that

for positive, Maxwellian data:

(i) yj(ý) > 0 for ý E [-1, 1]

(ii) Q(f(-1)) = Q(f(O)) = Q(f(+l)) = 0

(iii) fj E C'" [-1,1] for some 0 < a, < 1, with a, increasing as e decreases; moreoer,

there is eo(f+) > 0 such that for 6 < 60 the functions f3 are Lipshitz continuous on [-1, 11.

(iv) Q(f) does not change sign on the intervals (-1, P) or (0,1). As a consequence the

shapes of the functions fj belong to one of the following categories:

C1 : Q(f) > 0 on (-1,0) and (0,1); fl is increasing on (-1,1), f2 is decreasing on

(- 1, 1), f 3 is decreasing on (- 1, 0) and increasing on (0, 1).

C2 : Q(f) < 0 on (-1,0) while Q(f) > 0 on (0,1); f, is decreasing on (-1,0) and in-

creasing on (0, 1), f2 is increasing on (-1, 0) and decreasing on (0, 1), f3 is increasing

on (-1,1).

C3 : Q(f) < 0 on (-1,0) and (0, 1); fl is decreasing on (-1, 1), f2 is increasing on

(-1, 1), f3 is increasing on (-1, 0) and decreasing on (0, 1).

C4 : Q(f) > 0 on (--1, 0) while Q(f) < 0 on (0, 1); fi is increasing on (--1, 0) and decreas-

ing on (0, 1), f2 is decreasing on (-1,0) and increasing on (0,1), f3 is decreasing

on (-1, 1).

C5 : Q(f) = 0 on (-1,0) and/or Q(f) = 0 on (0,1); In this case fl,f2,f3 are constant

on the region where Q(f) = 0, and fl, f2, f3 have the behavior indicated in Cases 1

- 4 where Q(f) > 0 or Q(f) < 0.
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Henceforth, the data f1 are fixed subject to (M) and it is assumed that for each E > C

the problem (Pe) admits a solution f-. The question of existence is considered in [ST].

The difficulty of this problem is that the underlying equations are singular and that one

needs to guarantee existence of solutions for every value of the parameter -; > 0. This has

only been accomplished for a certain class of boundary data J+ (c.f. [STI). However, such

restrictions do not enter in any other way in the present analysis.

The functions f are extended to the whole real line by setting f' = f- on (-oC, -1)

and f' = f+ on (1. oo). The restrictions on the shapes of solutions are the key ingredient

of the following theorem [ST, Lerima 1.2, Theorem 2.1].

Theorem 2.1. Let {f"}1>o be a family of extended solutions of (P,) corresponding to

data f+ satisfying (M). Then:

(a) There are positive constants ijn, Nlj and ITj, j = 1,2,3, depending on the boundary

data f+ but independent of e such that

0 < mj !5 f,(ý) < MIj, , E [-1,1] (2.4)

TV[-,,,I f; K K2  (2.5)

(b) There exists a subsequence {f " } with e,, - 0 and a positive, bounded function f of

bounded variation such that fln --+ f pointwise on the reals. The function f satisfies

f { f 0 (-o , -1] f3/- for a.e. ý E [-1,11 (2.6)

on Oi 1,oo) f V
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and the balance of mass and momentum equations

d (f, + f2 + 4(flf2)1 2 ) + d (h - f2) = 0,d, d (2.7)
d J(fl - f2)- + d(fh + f2) =0,

in the sense of distributions and in the sense of measures.

The functi-ni

fj) (f=(X ), f2(X)) (x,t) C (-o ,oo) x (0,•), (2.8)
tt -t

is a weak solution of the Riemnann problem (1.5,1.8). Indeed, (1.8) is certainly satisfied.

That the weak form of (1.5) is satisfied follows from the weak form of (2.7) by using a

change of test functions.

§3. Structure of solutions I

Let {f:},o0 be a family of solutions to (P,) corresponding to fixed boundary data f+

subject to (M). The functions Pf satisfy

E= 1 Q(f) (3.1)

1-c

1 Q(f ) (3.2)
f2 +1

1 Q(f 1) (3.3)

with

Q(f) = Q o P•= f3• 2 _ff. (3.4)
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The form of the above equations suggests to monitor the quantity Q(f)/.r and study its

limiting behavior as . 0.

Representation formulas

First certain representation formulas for Q(f• )/• and the derivatives fj are derived.

We introduce the notation

c- fl' f2' +f6

(+1 1•) ý

and remark that the function c' depends implicitly on e through the dependence on the

solution f-. A simple computation, using (3.1 - 3.3), shows that

dQ(fE) 1 f f I_ + __) Q(f cc Q(fC). (3.6)

After an integration (3.6) leads to

Q(f f f- Q(f'(a_)) exp{ ; f c'(s)ds } for ý E (-1,0) (3.7)

Lr fQ(f'(a+)) exp{ 1 fý ce(s) ds } for ý E (0, 1)

where a-, a+ are any two points with -1 < a- < 0 < a+ < 1. It is convenient to

introduce a notation

{f_ ct(s) ds E (-1,0)(3)

f f+ c'(s) ds E(0,1)

for the integrals appearing in (3.7).

11



Integrating (3.1) and using (3.7), we obtain

fA(O) - f7 Q(f'(a_)) Lo 1 9'(() d(
(3.9)

Q(f t (a+)) e' 1 ( d(.
f+ - f (0) = 7 -J o i d

In turn, bubstitution of (3.7) and (3.9) in (3.1) gives

f0-= (fe(0) - f) I ( E (-1,0), (3.10)

I .'g'4

f•'(•) = ff(0)- -) f,,- •.od

f' = (f+ - fi(0)) C_ g-w---d E (0,1). (3.11)

Relations (3.10 - 3.11) are conceptually interesting as they express f" as an averaging

process. Note that the weighting factors g' depend on the solution ft. Analogous relations

hold for the derivatives f2 and f3'.

In a similar manner using (3.1 - 3.3) and (3.7), we obtain

(f'(a_)) ft f (0) - f " =- f2 _ B - f; (3.12)

Q(ft(a+)) _ f+ - fE(O) f - f2(O) _ - f (O) (3.13)

Equations (3.12 - 3.13), in conjunction with (3.7) and (3.1 - 3.3), show that Q(f')/E and

the derivatives fi' may be expressed in a variety of ways. In the sequel we work with

Q(f) e f (f,(0) - f )y.., on (-1,0)

U2 (f2(0) -f+)A on (0, 1)

where iA*_ is defined on the interval (-1, 0) by

AL W e c (3.15)

I_)-o e~g,(OCd• fo 1 f- ,,(,add
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P6 is defined on the interval (0, 1) by

l r c' (s) ds

W() = I e eI C, (3.16)

and a- E (-1, 0), a+ E (0, 1) are arbitrary constants. The functions jz' are normalized

versions of Q(f')/F with a different normalization used in each of the intervals (-1, 0) and

(0, 1). It is easy to check that they are independent of the specific choice of a±.

Our next task is to rewrite c' in a more suggestive form. Given f = (fl, f2, f-f) E IRs

with f, > 0, the roots of the quadratic

(fl +f2+f3) 2 -(f-f2)-f.3 =0

are real and given by

A1.2(f) = 2 (f, + f2 + f3) fI -- f2 V/(f, - f2)2 + 4f3 (f, + f2 + f3)

= 2(fl + f2 + f3) fl - f2 ± 1(fI+f2 +2f.3) 2 -4flf2 , (3.17)

where A, corresponds to the minus sign and A2 to the plus. They enjoy the properties

1< f2 + f < A(f) < 0 < A2(f) < fl + f _ < 1. (3.18)
fh +f2 +f3 h( +f2 +f3

Using (3.17), c' may be expressed in the form

Sf 'f 2 + f
~+1 1 - ý

1 (f + f•r + f.f) A( I,(f-)) A• 2 (f").(.9

1 
(3.19)
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Remark. It is instructive to compare the functions A1,2(f) with the eigenvalues A1,2(f)

of the limit fluid equations (1.5). The latter is a pair of conservation laws for f = (fl, f2)

of the type

A(f) + -xB(f) = 0. (3.20)ax

Such a system is strictly hyperbolic provided that VA(f) is nonsingular and the roots of

the characteristic polynomial (let (VB(f) - A VA(f)) = 0 are real and distinct. For the

case of (1.5), in the range of interest fl > 0 and f2 > 0, the functions A(f) and B(f) are

smooth. An easy computation shows that

2
det VA(f) = , (f, + f2 + %/ flf2) 0 0 (3.21)

while the eigenvalues are real and given by

A,1+ fl - f2 2(3.22)

A1,2(f) = 2(fI + f2 + l fl- ff ) I( fl + f2 + 2Vff7lf2 -4ff2 (3.22)

Note that A1,2 (f) are determined from a two-vector (fl, f2) while A1,2 (f) depend on a

three-vector (fl, f2, f3) and thus are not directly related. However, the two functions

coincide along Maxwellians, what suggests that A1,2(fe) trace the eigenvalues of (1.5)

along the fluid dynamic limit e - 0.

Behavior near the singular points

Next we analyze the limiting behavior of f' in the neighborhood of the singular points.

In the sequel C will stand for a generic constant independent of E.
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Lemma 3.1. There are constants Al+, A2,t with -1 < A1 - < A,+ < 0 < A2 - < A2+ < 1

depending on mj, Mj but not e such that

"Al_+0 for E E (-I,AA,-)

___ for E(A,+,0)
I ~f(0 11+M (3.23)
C 2. for E(0, A2-)

C I -,f,+) 2. for E (A2+, 1)

As a consequence

1
-Q') -+ 0 pointwise for ý E £:= [-1, A,-) U (A,+,A 2-) U (A2+, 1] (3.24)

and uniformly on compact subsets of £.

Proof. First we use (2.4) to uniformly estiniate the behavior of cE in the neighborhood of

the singular points.

Claim: There exist constants -1 < A1 - < Ai+ < 0 < A2 - < A2+ < 1 such that

m( ) <cl(s) for -1 < s < A1 -2(s+ 1)

m ,(.S) < 13 for A,+ <s<OS< 2--<0
2s

m3 <c'(s) for 0 < s < A2 -
2s

cC(s) < for A2 + < s <1
2(1-s)

We show the first two inequalities. It follows from (3.19) and (2.4) that for s E (-1, -2

fr(s) _ ft(s) f'(s)
s+ 1 3/2 1/2

> n I V2 113 17,> 3/2 1/ -A
-s+1 3/2 1/2 s+l

15



If we set A1- = rain{-1/2, -1 + (mu/2A)}, we see that

c'(s) ! m' -A > on (-1,Ao-).-S+1 2(s +1)

which completes the first inequality. Similarly, for s E [-½, 0)

) M 1  m2 m3 =: m3

1/2 3/2 s s

Choose now Ai+ = max{-1/2, -ma/(2B)} and observe that

c(S) + B < on (AI+,0).

By construction the thresholds A,- , A,+ have the property -1 < A1 - < A,+ < 0. This

proves the first part of the claim; the second part is shown in a similar fashion.

Next we set a- = A1 - in (3.7) and use (3.4), (2.4) and the first inequality in the claim

to obtain for -1 < < A1 -

-( C -x f c'(s) ds}

< -C exp { AI + _ ds}
c( A+1 -',
Cl + 1)2"

Similarly, using (3.7) with a-_ = A,+ and the second inequality in the claim, we deduce

for A,+ <ý <0

Q(f (0)) 1__ C €xpf1 ' +C(s)ds}

C 1 4 3 ds
<- exp {- 2-

16



Hence, the first two assertions in (3.23) are proved. The proof of the other two is similar

and is omitted. .

§4. Structure of solutions II

Consider the family {f }',>O of extended solutions to the problem (P,) corresponding

to positive, Maxivellian data f±. The functions f take the values f- on (-cc, -1] and

f+ on [1, oo), they satisfy the equations (2.1 - 2.3) for a, b E IR. and enjoy the properties

described in the preceding sections. Our objective is to study the structure of the limit

points of the family {f"}e>0.

Helly's theorem and the uniform estimates (2.4 - 2.5) imply that there exists a subse-

quence (denoted by) {f'} and a function f such that f' --+ f pointwise on the reals. The

limit f = (fi, f2, f3) is a function of bounded variation, its components fi are strictly

positive, and it satisfies f = f- on (-oo, - 1], f = f+ on [1, oo). Henceforth, attention is

restricted to the subsequence {f'}, and the notation f' -• f will mean that a subsequence

of the original family converges to the function f; the choice of subsequences and the sense

of convergence is specified in context.

The first lemma establishes that the sequence { - } is uniformly bounded in Li. This

estimatc is a consequence of the variation bounds and stronger than the corresponding

estimate provided by the balance of entropy identity (c.f. [ST]). It measures hew fast {f-f}

relaxes to a local Maxwellian.
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Lemma 4.1. For any a, b E [-1,], a < b,

I --Q - d" <_ c (4.1)

where C is a constant independent of e.

Proof. By (iv) in Section 2, Q(f') has a sign on each of the subintervals (-1, 0) and (0, 1).

The proof will follow by a case analysis. Consider the case 0 < a < b < 1 and Q(f") > 0

on (0,1). Using (2.3) and (2.4), we obtain

Q(fz(-)) dj = 2 (fb (rf(d) - arfl(a)) 2 bf(')d7 < C,

which shows (4.1) in this case.

All other cases are treated similarly. When a, b take values on different subintervals,

(4.1) follows from a combination of the estimates on each subinterval. *

Since f' -- f , it follows from (4.1) and (2.4) that

abQ(f)ld7 = 0 for any bE [-1, 1].

Hence,

f3()=(f,(ý) ff))'2 for C E [-1,11- E,

where the set E of exceptional points has Lebesgue measure m(E) = 0.

Since f is of bounded variation, its domain can be decomposed into two disjoint subsets

C U S, such that on C all three components of f are continuous while on S at least one

of the fj is discontinuous. S is at most countable and the right and left limits f(ý+) and
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f(•-) exist at any ý E S. The functions f3 inherit the monotonicity properties of fj; as a

result • 0 is the only possible point where f(t-) = f(ý+) 5# f(ý) (but this is excluded

as well later). So S includes no points of removable discontinuity. It follows

f3 = (f () f2()) 1/ 2  for ý E C,
(4.2)

f3(+)-= (f1(ý+)f2(C+)) 1 /2 f(-) = (fj(C-)f2(C-)) 1 /2  for ý ES,

and E C S is at most countable. It is in this precise sense that f is a local Maxwellian. We

show next that at points of discontinuity the Rankine-Hugoniot conditions are satisfied.

Lemma 4.2. For any point C E S

- ff++f2+4 4f l If+)+ [f, -f2fl -0
(4.3)

fl - f )+ l + f2 =0

Proof. Fix ý E S and pick any a, b E [-1, 1] - S with a < < K b. In view of (2.1 - 2.3)

the sequence {fe} satisfies the identities

-b[f(b) + f2''(b) + 4 f; '(b) ] + a [ f '(a) + f2(a) + 4 f3(a)]

+ [ fb(b)-f(b) ] - [f'(a) -/f(a) ] + (Jf(r) + fe(r) + 4 f3(T)) dr 0

-b[ff(b) - f2(b)] + a [f,(a) - fe(a)] + [f1 (b) +fL(b)]

fl '[f(a) + f•(a) ]+ .( f,"(,r) - f2(r) ) d7=0.

First we pass to the limit e -- 0 using the property f3 = vff2 on C, and then let the

points a -- •- and b - •+. In the combined limit we obtain the jump conditions (4.3). *
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Since f may have discontinuities, the appropriate framework for passing to the e --+ 0

limit in (3.1 - 3.3) is that of measures. Consider the functions

(= dr (4.4)

and note that V takes constant values outside [-1, 1]. By Lemma 4.1, the sequence {T}

is uniformly bounded and of uniformly bounded variation on the reals. Helly's theorem

implies the existence of a subsequence, denoted again by {•C }, and a function of bounded

variation P such that ( -- - pointwise on IR. Henceforth attention is restricted to this

convergent subsequence.

Let p E C,(IR) be any continuous function with compact support in the reals and

consider the Riemann-Stieltjes integrals

<v~p 6 (4.5)
< V, V> := (ý &Dý

Helly's convergence theorem (Natanson [N, VII.7]) implies that

< ve, ý >= I w &V-- fI sdp, =< v, V > for any w E C,(IR). (4.6)

By the Riesz representation theorem ve, v may be viewed as finite (signed) Borel-Stieltjes

measures. They are both supported on [-1, 1], V is generated by ' while V is generated

by (b, the right continuous version of i defined by D(x) = i(x+) (c.f. Folland [F, Ch. 3.5,

Ch. 71). Equation (4.6) states that v, -- v in the weak-* topology of measures. It allows

20



to pass to the limit e --- 0 in (3.1 - 3.3) and obtain

fl (( ý-- dý =< v, ýo >

ff 2  + 1) )'dý =< v, V> (4.7)

f 3( 1 o)'d 1

for any ýo E C•(JR).

The next lemma characterizes the support of v,, supp v, as precisely the set of points

where f is not a constant state.

Lemma 4.3. Let t-" and v be as in (4.5). Then

(i) There are constants -1 < A,- < Ar. < 0 < A2 - < A2+ < 1 such that

{f on (-oo, A 1 )

f- f(0) on (A,+, A2 ) (4.8)

f+ on (A2+, 00)

and suppv C [A,,A,+] U [A2 _,A2+J.

(ii) • € supp v if and only if there exists an open interval I containing • such that f is

constant on I.

(iii) S C supp v.

Proof. Let A ±1 ,A 2± be as in Lemma 3.1. Integration of (3.3) over (0,•), 0 < • < A2 -,

and use of (3.23) give

'EW 'E(o) Q fe(()) d(I

jf~(~) f =~0) 2 C e

A21 M3 A2-
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Passing to the limit 6 -- 0, we see that f3 = f3(0) for ý E [0. A2-). Similar arguments

establish all other statements in (4.8).

Next we turn to the properties related to the support of v. Recall that -• supp v if

there exists an open interval I 3 ý such that < v, (p >= 0 for any ý0 E C,(I). Let ý0 be

continuous with supp p C (-00, Al_)U (Ai+, A2-) U(A 2+,oo). Then (4.6) and (3.23) imply

<" •>=[ Qf) dý -- 0 =< v, V > as e-+o
as-0.

Hence, suppv C [A _,AI+] U [A2 -, A2+].

It suffices to show (ii) for points ý E [AI-,A 1+] U [A2 -, A+]. It follows as a direct

implication of the statement:

Claim. Let I be an open interval such that I C (0, 1) or I C (-1, 0). Then f is constant

on I if and only if < v, V >= 0 for any yp E C2(I).

One direction in the claim is clear from (4.7). To show the converse, suppose that I C (0.1)

(for concreteness) and that < v,cp >= 0 for any (p E C,'(1). The third identity in (4.7)

then implies

Itf 3 O'dý = 0 for any E C (I).

Fix X E C,(I) with f x ds = 1. Given 0 E Cc(I) define

=X (X dr))ds

Then E e C' (1) and using that as a test function we obtain

xf3 ( -x(j0dr))d =j1(.-j(f 3 x)ds) kd=0 for any EEC,(I).
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It follows that f3 = fj(f3 x) dý a.e. on I. Since f.3 is monotone in (0, 1), f3 is constant on

I. In a similar fashion it follows that fi and f2 are also constant on I.

This completes the proof of part (ii). Part (iii) is a consequence of part (ii). j

Along the convergent sequence f" --+ f the functions ce converge pointwise (for -y

±1,0) to a function c. In view of (3.19) and (3.8), we write

cE = -((1-• + f2 + f.1) A( I(f-)) ( -A 2 (f))
(1 - __)

C = ( •) (f, -+ f2 +4 f) (-A, (f)) (-A2(f))

f, f2 f3 pointwise on (-1, 0) U (0. 1), (4.9)

and introduce the function

{ c(s) ds E (-1,0)
S(4.10)f,'+c(s) di (0, 1)

with a . E (-1, 0), a+ E (0, 1) fixed constants.

The following proposition is the main ingredient of the analysis. It characterizes points

in supp v as being points of global maxima (in appropriate intervals) for the function g.

This property incorporates admissibility restrictions induced by the relaxation process.

Proposition 4.4. Let C E supp v.

(i) If ý E suppv n (0,1) then g(() <_ g(c) for any (C E (0,1)

(ii) If ý E suppv fl (-1,0) then g(() < g(ý) for any C E (-1,0).

Proof. We show (i). The proof proceeds in two steps.
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Step 1. r ix some a+ E (0, 1) and consider the functions g' defined in (3.8). The

dominated convergence theorem, (4.9) and (2.4) imply that

ge= c(s)ds -+ g = c(s)ds pointwise for ý C (0, 1).

By virtue of (2.4), (3.19) and (3.17), on any compact [a, b] C (0,1) the sequence {ge} is

uniformly bounded and equicontinuous. The Ascoli-Arzela theorem implies that a subse-

quence {gý' } converges uniformnly. Since the whole sequence converges pointwise to g,

g g = j c(s) ds uniformly on any [a, b] C (0,1). (4.11)
J•+

The limit g is uniformly continuous on [a, b] C (0, 1).

Step 2. The second step is to show:

If ý E (0, 1) is such that for some a > 0 the set

A {E (0, 1) : (() -g(ý)= c(s) ds > a (4.12)

has positive Lebesgue measure re(A) > 0, then ý 0 supp v.

To show (4.12), let ý E (0, 1) be fixed and let a > 0 and A be as above with rm(A) > 0.

Using (3.16) and (3.8), we write

/4 ) = 1 1 . (4.13)fo -,e1 ;(9 (0 -9'M,) d( f1 1 ee f4 c.(s) ds

Our goal is to estimate the integral in the denominator.
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First, note that the estimates for the function c- in Lemma 3.1 can be carried to the

limit e --- 0 to show: There are constants 0 < A,2- < A2+ < 1 such that

mn3
"M3 < c(s) for 0 < s < A2-
2s

C(S) < rn 2 for A2+ < S < 1

Hence, for 0 < C < A2-,

c(s)ds < 3 1- Ia
X2-2 A2 -

while, for A2+ < C < 0,

12 K li - cc , as€---,1-.
( c ( s) d s < I 2 I n 0 ,a

12 + 2 1 - A2+

It follows that points ( near the endl)oints of (0, 1) violate the inequality in (4.12), and

that A is contained in some compact interval [c, d] C (0, 1).

Fix now 6 > 0 such that

•'E( -6, +6) implies Ig(<)-g( ')i<-
6

Because of the uniform convergence on compact subsets (4.11), we can choose 1o > 0 such

that

'E( - +,C+<), < , E .A imply ge(()-gE(ý')> -.
2

In turn, (4.13) yields for •' E ( -, , + b)

0 < i,(' < 1 < 2 (4.14)
+ ~ i e~{f!C(~s rn(A)
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Let V be a continuous function with suppp C (6 - 6,ý + 6). Then (4.5), (4.6). (3.14)

and (4.14) together imply

< ve, V > = [Q(f'( W)) •(p(') <•

= (f(0) + < --+ 0

Thus • € supp v and the proof of the statement (4.12) is complete.

It follows that for ý E supp v it is m(A) = 0 for any positive ca. Since g is continuous,

that implies

g(¢)- g(O) c(s) ds< a for all¢(E (0, 1), a >0.

Hence, g(() < •g() for all ( E (0, 1). §

The maximization properties of g at points in the support of v provide information on

the structure of the limit function f. In particuiar, a weak form of the Lax shock conditions

is satisfied at any point of jump discontinuity.

Corollary 4.5. Let ý, ý' E [-1, 1], • < •'.

(a) If ý E C n supp v then

S=Aiff(•)) for < 0,

(4.15)
1\ 2(f (0) for > 0.

(b) If ý E S then f satisfies at • the jump conditions (4.3) and the inequalities

Al(ffl +)) _< A_<i1f(l(-)) for < 0,

(4.16)
A2(f(ý+)) _ ( • A2(f(M-)) for > 0.
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(c) If •, •' E suppv o (-1,0) then A,(f(f+)) = •, A,(f(('-)) = ' and for 9 E (•,•'):

0 = A,(f(0)) if 9EC (4.17)

A,(f(0+)) = 9 = A,(f(9-)) if 9 E S (4.18)

If , •' E suppv v (0,1) then A2 (f( +)) = ý, A2(f('-)) =ý' and for 0 E (E , '):

0 = A2 (f(0)) if 9EC (4.19)

A2(f(9+)) = 9 = A2 (f(O-)) if 9 E S (4.20)

Proof. The proof is presented for E E (0, 1); the case of (-1, 0) is similar.

Consider the function g in (4.10) restricted to the interval (0, 1). Note that g is contin-

uous and g(C) -- -oo as ( --- 0+ or - 1-. Since c is of bounded variation

lim - lira c(s)ds = c(6±). (4.21)

Thus f exists and is continuous at points of C, while only the right and left derivatives

exist at points of S. Let ý E supp v fn (0, 1). By Proposition 4.4 the function g achieves its

global maximum on (0, 1) at

g(() 5 g(ý) for any C E (0,1).

First we show (a) and (b): At

S< 0, C ) 0,
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from where, using (4.9), (3.18) and noting that • > 0, we conclude

\- 2(f(•+)) ? 0, A- 2 (f(•-)) <0. (4.22)

If • E C then (4.22) leads to (4.15). If ý E S then the jump conditions (4.3) are satisfied

at •, by Lemma 4.2, and (4.22) gives (4.16).

Next we show (c). The points ý, ý' E supp v n (0, 1), • < •', are both global maxima for

g. Therefore g(ý) = g(ý'). We claim:

g(0) = g(ý) for any 0 E (•, '). (4.23)

If (4.23) is violated at some point, there exist a, b with • a < b < ý' such that

g(a) -- g(b) = g(), g(9) < g(ý) for a < 0 < b.

At the points a, b we have

A2 (f(a+)) <a < A2(f(a-))

A2(f(b+)) <b <A-2(f(b-))

On the other hand, it follows from Lemma 4.3 and Proposition 4.4 that f is constant in

the interval (a, b) and thus A2(f(a+)) = A2(f(b-)). The inequalities then imply b < a,

which contradicts a < b; hence (4.23) follows.

28



This establishes that g stays constant at its maximum value on [•, i']. Therefore c(ý+) =

c(ý'-) = 0 and c(8-) = c(8+) = 0 for • < 0 < 6'. In turn, these yield

SA2 (f(0)) for 0 EC

A)2 (f(O+)) = 0 = A2 (f(O-)) for 0 E S

6 =A2 (f (60)

'= A2 (f(6'-))

and the proof is complete. g

Behavior of solutions in the wave fans

It follows that the region where f is nonconstant consists of two disjoint closed intervals:

I, = t[al,bfl C (-1,0) associated with the first characteristic speed AI(f) of (1.5), and

I.A2 = [a 2 , b2] C (0, 1) associated with the second characteristic speed A2 (f). Each of I,\ or

I 2 could be empty or consist of just a single point. The function f takes constant values

on the complement of It U I\ 2 , while it has the behavior indicated in Corollary 4.5 at

points of I, 1 or A2 .

Our next objective is to obtain a fuller description of the behavior of f on the two

wave fans. The following proposition does not use the specific form of (2.7), but only its

structural properties and relations (4.17 - 4.20). It is thus convenient to work with the

abstract form of (2.7)

-6 d-A(f) + -B(f) = 0
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and the associated weak form

-bA(f(b)) + aA(f(a)) + B(f(b)) - B(f(a)) + A(f(s)) ds = 0 a, bE IR. (4.24)

Consider the strictly hyperbolic system (3.20) with A(f), B(f) at least twice continu-

ously differentiable and VA(f) nonsingular. Let Ai(f) be its eigenvalues, li(f) the left

eigenvectors and ri(f) the right eigenvectors. They are connected through the relations

VB(f)ri(f) = Ai(f) VA(f)ri(f)
(4.25)

li(f) VB(f) = Ai(f) li(f) VA(f)

and satisfy the normalization conditions

li(f) " VA(f) rj(f) = 6ij. (4.26)

Proposition 4.6 Suppose that IAk = [ak, bk] is a full interval, ak < bk.

(i) For each E [ak,bk) such that VAk(f(+)) .rk(f(f+)) 54 0 it is

im 1 1
lim h(f(ý + h-)-f(+)) = VAk(f(+))k( +)) (4.27)

h-0, h>o h rk~f(f+)) (4.27

(ii) For each E G (ak, bk] such that VAk(f(&-)) - rk(f(--)) # 0 it is

im 1 1
lim - (f(ý + h+) - f(1-)) =rk( ) (4.28)

h--0, h<o h VAk0f(l-)) r(
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Proof We show (i). Fix 6 E [ak, bk) and let h > 0 such that ý + h E I,\. The weak form

(4.24) taken between the points 6+ and ý + h- gives

[-6 VA(f(6+)) + VB(f(6+))] (f(6 + h-) - f(6+)) (4.29)

=(6 + h) [ A(f(6 + h-) - A(f(ý+) - VA(f(ý+)) (f(6 + h-)- f(6+))-

- [ B(f(6 + h-) - B(f(ý+) - VB(f(6+)) (f(ý + h-) - f(6+)) ]

- [ Af(s)) - A(f(6+) ] ds + h VA(f(&+)) (f(ý + h-) - f

The increment (f(6 + h-) - f(6+)) is expanded in the basis of right eigenvectors

w(h) := f(ý + h-) - f = Zwi(h)ri(f(•±) (4.30)

Note that for a function of bounded variation w(h) -- 0 as h --- 0t, and that by (4.26)

wi(h) = i(f(±+) " VA(f(ý+))w(h). (4.31)

Taking the inner product of (4.29) with li(f(6+) and using (4.25), (4.31) and the Taylor

expansion, we obtain

rh
[-• + Aj(f(ý+))] wi(h) = O(Iw(h)l) + 0( 10 lw(s)l ds) + O(h ]w(h)i), (4.32)

On account of Corollary 4.5 and the strict hyperbolicity property of (1.5), the coefficient

(-6 + Ai(f(6+)) is nonzero for i 5 k but vanishes for i = k.

Next, using (4.17 - 4.20) and the Taylor expansion of Ak, we see that

Ak(f(6 + h-)) - Ak(f(6+)) = h (4.33)

= VAk(f(f+)) • (f(ý + h-) - f(6+)) + O(lw(h)12).
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If we set 9k = VAk(f(±+)). rk(f(f+)), 9k #5 0 by hypothesis, and use (4.33), (4.30) and

relations (4.32) for i k we arrive at the estimate

gkwk(h) - hI t ( = 0 ,L.(h)I ) + 0(Iw(h)12 )

= O(lw(h) ) 2+0( jh iw(s)l ds) + O(h jw(h)l). (4.34)

Adding (4.32) for i € k with (4.34) gives

(p(h)"= igk Wk(h) - hi + Z Ijw(h)I
i=•k

-0( (Iw(h)l + h) Iw(h)I ) + 0( ,fh Iw(s)I ds)

= O((lw(h)I + h) (h)) + j( f (s)ds) + O(h 2 ). (4.35)

Since w(h) --- 0 as h -I 0+, we can choose 6 sufficiently small so that for 0 < h < 6

h

V(h) Ch 2+C po W(s)ds

The integral inequality, in turn, yields

0 < •(h) < C'h 2  for 0 < h < 6

and thus

lirn wo(h) = 0fi k, lir Wk(h) = 1

h-o+ h ' h-o+ h

This shows (4.27). Part (ii) is proved similarly. I

Proposition 4.6 implies that f has right and left derivatives at any point ý which is not

an accumulation point of S. If such a point ý belongs to C then f is Lipshitz there, and
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if, in addition, it is an interior point of I,x then f is differentiable there. It also completes

the picture regarding the structure of the wave fans. There are the following cases:

(i) If IA, consists of a single point then the solution is a shock wave satisfying the weak

form of the Lax shock conditions (4.16).

(ii) If 1,k is a full interval of points in C the solution is a k-rarefaction wave (provided that

VA, .rk 0 0 on 1A, which is anyway necessary for rarefactions).

(iii) In general 1 ,\k consists of an alternating sequence of shock waves and k-rarefaction

waves such that each shock adjacent to a rarefaction from one side is a contact discontinuity

on that side.

The emerging picture is that typical for small data of strictly hyperbolic but not genuinely

nonlinear systems. It will be further simplified in Section 6, by using the geometry of the

shock curves for (1.5).

§5. Self-similar limits and shock profiles

Our next task is to discuss the relation between self-similar fluid dynamic limits and

shock profiles for the Broadwell model. To this end fix ý a point of discontinuity for f,

and note that f(ý-) # f(ý+) are both Maxwellian states and satisfy (4.3).

Consider a sequence of points {J, } with the property c, -+ ý, to be specified later.

Define functions v•(() = f ± e () in the new variable -oo < C < co. This accounts

for a shift of the original solution and the introduction of the stretched variable (. The

uniform estimates (2.4 - 2.5) imply
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0 < m< ( + )_<Ms,
(5.1)

T VCf(ý e.) + TVtf() K K,.

Using Helly's theorem and a diagonal argument we establish the existence of a subsequence

and a function v = (vI, v2 , v3 ) such that

f•(' +e•) )* vj(¢) pointwise for - oo < (< <0. (5.2)

The sequence {f } defined in (4.4) is of uniformly bounded variation. Upon restricting to

further subsequences, if necessary, we also have

/ Q(f (r)) dr i( ,() pointwise for - co < < o0, (5.3)

•,(•,) _., 0o.

The following lemma shows that the phase shift { } can be arranged so that v is a

shock profile for the Broadwell system connecting the states f(ý-) with f(ý+).

Proposition 5.1 There exists a choice of the sequence {f} such that v((), defined by

(5.2), is continuously differentiable and satisfies the differential equations

dv1  dv1-• +d---T = Q(v)
Sdv 2  dv2-d - de = Q(v) (5.4)

_CdV3  1

and the boundary conditions

v(-Oc) = f(-), v(+oC) = f(W+). (5.5)
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Proof. The proof has two steps. The first step, to show (5.4), is independent of the

particular choice of the sequence • --

We evaluate (2.1) between the points , + e( and 0 and obte-n

-(+ +G)f. + 6 ) + 0 ff () + fl(G. + e) - ff(0) (5.6)

+ ff (7) = 1 j Q(fe(r))dr.

Observe that, along a subsequence and as e -- 0,

j• (J d7 -- (7)d7

while

1 Q(f (r-))dr d Q(f"(r))dr + Q(f-(7))dT

-+ (() ()j0 Q(f (+ es)) ds

4)( - 0(0)) + j Q(v(s)) ds.

Passing to the limit in (5.6), we deduce that for 0, • E IR

"--ýV(0) + vl() -j Q(v(s))ds = -0f, (0) + f,((0) -+j + (10- (0)). (5.7)

In a similar fashion from (2.2 - 2.3) we obtain the relations

-V2() - ,()- j Q(v(s))ds = -0f2(0) - f2(0) + f 2 (T-)d- +(- (5.)

-ýV3(() + Z Q(v(s))ds = -0f.3(0) + f 3(r)dr - I( 9°o )). (5.9)
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Since the above equations hold for any 0, ( E R, both the left and the right hand sides are

constant. That is, there are six equations hidden in (5.7 - 5.9): three for f, and three for

v describing the internal structure of the shock profile. The functions vj are continuously

differentiable and satisfy the system of ordinary differential equations (5.4).

We proceed to show (5.5). In preparation, note that (5.7 - 5.9) may be combined to

obtain

-v,(() + 2 V3((•) ) + V() = A

-(2() + 2 V3(0) -V2(0) = B (5.10)

-d -V-3C) 2 (v(¢) - VI(() V2

where the constants A, B are calculated from the right hand sides of (5.7-,5.9), as 0 '.

and are given by the formulas

A - -• (f,±) + 2 f3(ý+)) + fi(&+) - -• (f (H-) + 2 fs(ý-)) + f (i-)

B = -• (f2(ý+) + 2 fa(ý+)) - f2(ý+) = -• (f2(ý-) + 2 f3(ý-)) - f2(ý-)

Also recall from (4.2)

f32(ý+) - fl(ý+) f2(ý+) = 0, f3 2 (6-)-f,(6-)f2(-) =0.

The equilibria (u 1, u2, u3) of (5.10) are determined by solving the algebraic system

-6((ul +2U 3 )+ul =A

-U(2 + 2 U3 )U2 = B (5.11)

U3 -2 u U2 -0
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Substituting the first two expressions in the third, we see that U3 is determined from the

roots of the quadratic

(1 -_ 2 ) u 3
2 + (A + 26 u 3 ) (B + 2 u 3)

and then ul , u2 are obtained by solving the linear equations. Therefore (5.11) has at most

two real solutions, and as a result the equilibria of (5.10) are precisely f(ý-) and f(ý+).

We turn now to (5.5). To fix ideas, suppose that ý E (0, 1) and that f• is monotone

increasing (for some j) in (0, 1) but may be increasing or decreasing in (-1. 0). Let 6 > 0

be fixed. Given any bounded :nterval J - 0 and provided that e is chosen sufficiently

small, the function ff(• + E () is monotone increasing on J and

f(6- 6)< fj(6'r +6)<f(6+ 6), for (E J.

Passing to the limit e -* 0, we deduce that vj is monotone increasing on any J, and thus

also on (-00, 00), and that

(- < Vj(-OO) < vj(0) < vj(+oo) < fyj(+). (5.12)

Both the inequalities and the monotonicity properties are reversed when we start with a

component f; that is monotone decreasing in (0, 1). In either case the limits v(-oo) and

v(+oo) exist and are finite.

For 6 E S it is f3(6-) : f3(6+); otherwise f(6-) = f(6+) by the analysis of (5.11).

Suppose for concreteness that f3(ý-) < f3(ý+) and fix a state v3(0) such that

7 < <
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Since ff is monotone near • and ff -- f3 pointwise, for each sufficiently small e we can

choose ý, such that f(ý,) = v3(0). The sequence {(,} has the property , -- (. With

this choice of {(,} define the associated v by (5.2). Then v satisfies (5.10) and the limits

v(-oo) and u(+oo) exist and satisfy (5.12). Since f(ý-) and f(ý±) are the only equilibria

of (5.10) and v(0), by virtue of selection, is not an equilibrium state, we conclude that

f(M-) = v(-o0) :A V(+00) = f+

and the proof is complete. g

§6. The limit fluid equations

In this section we use the special properties of the limit fluid equations (1.5) to complete

the description of the wave fans. The properties used are the genuine nonlinearity of the

characteristic fields of (1.5) and the geometry of the shock curves. Although they are both

discussed in Caflisch [C], we give an independent presentation for completeness and to

account for extended differences in notation.

The eigenvalues AI(f), A2 (f) satisfy the characteristic polynomial

(f+f2 + flf 2 ) Ai 2 -(f -f2) Ai- flf2 = 0 (6.1)

and are given by (3.22) or (3.17) for f3 = v-f71 f2. The corresponding right eigenvectors are

easily computed

A-+1] /31,2ri - Ai--1 '-
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We differentiate (6.1) in order to express 8 8 in terms of Ai, and use the resulting

expressions to compute

VA - r=( -( 2) ((f, + f 2 + 4 VI )A-(f, - f2) (6.2)2-r -f -2 (f, +f 2 +V'Tf)2Ai -(f, -f2)) "

The denominator in (6.2) is positive for the positive eigenvalue A2 and negative for A1 . On

the other hand, (3.17) yields

AI(f) < U- f2)- if1 - f2l < fl -- f2

2(fl+f2+v'f) - f+f2+4 V -f

A2 ()> (fl - f2) +IfV - f2 fl - f2
2(f, +f2+vjIff) -f±+f2+4V7- u

It follows from (6.2) and (3.18) that VAi 7. i > 0 for i = 1, 2.

Since (1.5) is genuinely nonlinear, the possibility of contact discontinuities is ruled out

at least for weak shocks. For the case of strong shocks we need to study the geometry of

the shock curves.

The shock curves are defined by solving the Rankine-Hugoniot conditions

-S( u, + 2U) + U1 = -s(vi +2V 3 ) + V

-s(u 2 +2u 3 ) - u 2 = -s(v2 +2v 3 )-v 2  (6.3)

U32 U1 U2 = V 3 2_V 1 V2 = 0

for the states u = (u], u 2 , u 3) and v = (v, V2 , v3) and the shock speed s. To this end fix

one state, say v, with V3 = V/"ý 7v-2 and consider the increments [ui] = ui - vi. Then

2s [u 3 1 = (1 - s) [uII = -(1 + s) (u 21 (6.4)

Eu31 ([U3] + 2V) = [Ui] [U21 + V2 [u1l + V1 [U21 (6.5)
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Substituting (6.4) into (6.5) yields

[U3 ][1(1+3 s')[U31 -2 [ (v +V 2 + V3 ) S' -(VI -V 2 ) S -V 3  0

If [u31 = 0 there is no shock. Thus, using (6.1), we obtain a representation of the shock

curve parametrized by the speed s in the form of

[U31 =2 (vi + V2 + VVI V2) (s - A, (v)) (s - A2 (V)). (6.6)1 +3s 2

t'-gether with (6.4). As a consequence, if the shock is a contact discontinuity (at either

side) then the strength of the shock [u] = 0.

This observation excludes the possibility of contact discontinuities and simplifies the

structure of the solutions for (1.5) considerably. We conclude then that each wave fan is

either a single rarefaction or a single shock which satisfies the Lax shock conditions.
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